23 research outputs found

    Real-Time Human Motion Capture with Multiple Depth Cameras

    Full text link
    Commonly used human motion capture systems require intrusive attachment of markers that are visually tracked with multiple cameras. In this work we present an efficient and inexpensive solution to markerless motion capture using only a few Kinect sensors. Unlike the previous work on 3d pose estimation using a single depth camera, we relax constraints on the camera location and do not assume a co-operative user. We apply recent image segmentation techniques to depth images and use curriculum learning to train our system on purely synthetic data. Our method accurately localizes body parts without requiring an explicit shape model. The body joint locations are then recovered by combining evidence from multiple views in real-time. We also introduce a dataset of ~6 million synthetic depth frames for pose estimation from multiple cameras and exceed state-of-the-art results on the Berkeley MHAD dataset.Comment: Accepted to computer robot vision 201

    Play and Learn: Using Video Games to Train Computer Vision Models

    Full text link
    Video games are a compelling source of annotated data as they can readily provide fine-grained groundtruth for diverse tasks. However, it is not clear whether the synthetically generated data has enough resemblance to the real-world images to improve the performance of computer vision models in practice. We present experiments assessing the effectiveness on real-world data of systems trained on synthetic RGB images that are extracted from a video game. We collected over 60000 synthetic samples from a modern video game with similar conditions to the real-world CamVid and Cityscapes datasets. We provide several experiments to demonstrate that the synthetically generated RGB images can be used to improve the performance of deep neural networks on both image segmentation and depth estimation. These results show that a convolutional network trained on synthetic data achieves a similar test error to a network that is trained on real-world data for dense image classification. Furthermore, the synthetically generated RGB images can provide similar or better results compared to the real-world datasets if a simple domain adaptation technique is applied. Our results suggest that collaboration with game developers for an accessible interface to gather data is potentially a fruitful direction for future work in computer vision.Comment: To appear in the British Machine Vision Conference (BMVC), September 2016. -v2: fixed a typo in the reference

    Implementation of Upper Extremity Trauma Registry: A Pilot Study

    Get PDF
    Hand traumas are common in young men and their complications can have negative effects on their occupation and economic activities. On the other hand, most of the hand injuries are related to occupation accidents and thus necessitates preventive measures. The goal of a clinical registry is assisting epidemiologic surveys, quality improvement preventions. This article explains the first phase of implementing a registry for upper extremity trauma. This phase includes recording of demographic data of patients. A questionnaire was designed. Contents include patients' characteristics, pattern of injury and past medical history in a minimal data set checklist. This questionnaire was filled in the emergency room by general practitioners. For 2 months the data were collected in paper based manner, then problems and obstacles were evaluated and corrected. During this period a web based software was designed. The registry was then ran for another 4 months using web based software. From 6.11.2019 to 5.3.2020, 1675 patients were recorded in the registry. Random check of recorded data suggests that accuracy of records was about 95.5%. Most of the missing data was related to associated injuries and job experience. Some mechanisms of injury seems to be related to Iran community and thus warrants special attention for preventive activities. With a special registry personnel and supervision of plastic surgery faculties, an accurate record of data of upper extremity trauma is possible. The patterns of injury were remarkable and can be used for investigations and policy making for prevention

    Pragmatic investigations of applied deep learning in computer vision applications

    No full text
    Deep neural networks have dominated performance benchmarks on numerous machine learning tasks. These models now power the core technology of a growing list of products such as Google Search, Google Translate, Apple Siri, and even Snapchat, to mention a few. We first address two challenges in the real-world applications of deep neural networks in computer vision: data scarcity and prediction reliability. We present a new approach to data collection through synthetic data via video games that is cost-effective and can produce high-quality labelled training data on a large scale. We validate the effectiveness of synthetic data on multiple problems through cross-dataset evaluation and simple adaptive techniques. We also examine the reliability of neural network predictions in computer vision problems and show that these models are fragile on out-of-distribution test data. Motivated by statistical learning theory, we argue that it is necessary to detect out-of-distribution samples before relying on the predictions. To facilitate the development of reliable out-of-distribution sample detectors, we present a less biased evaluation framework. Using our framework, we thoroughly evaluate over ten methods from data mining, deep learning, and Bayesian methods. We show that on real-world problems, none of the evaluated methods can reliably certify a prediction. Finally, we explore the applications of deep neural networks on high-resolution portrait production pipelines. We introduce AutoPortrait, a pipeline that performs professional-grade colour-correction, portrait cropping, and portrait retouching in under two seconds. We release the first large scale professional retouching dataset.Science, Faculty ofComputer Science, Department ofGraduat

    Multiview depth-based pose estimation

    No full text
    Commonly used human motion capture systems require intrusive attachment of markers that are visually tracked with multiple cameras. In this work we present an efficient and inexpensive solution to markerless motion capture using only a few Kinect sensors. We use our system to design a smart home platform with a network of Kinects that are installed inside the house. Our first contribution is a multiview pose estimation system. Unlike the previous work on 3d pose estimation using a single depth camera, we relax constraints on the camera location and do not assume a co-operative user. We apply recent image segmentation techniques with convolutional neural networks to depth images and use curriculum learning to train our system on purely synthetic data. Our method accurately localizes body parts without requiring an explicit shape model. The body joint locations are then recovered by combining evidence from multiple views in real-time. Our second contribution is a dataset of 6 million synthetic depth frames for pose estimation from multiple cameras with varying levels of complexity to make curriculum learning possible. We show the efficacy and applicability of our data generation process through various evaluations. Our final system exceeds the state-of-the-art results on multiview pose estimation on the Berkeley MHAD dataset. Our third contribution is a scalable software platform to coordinate Kinect devices in real-time over a network. We use various compression techniques and develop software services that allow communication with multiple Kinects through TCP/IP. The flexibility of our system allows real-time orchestration of up to 10 Kinect devices over Ethernet.Science, Faculty ofComputer Science, Department ofGraduat

    Constant-Factor Optimization of Quantum Adders on 2D Quantum Architectures

    No full text
    Abstract. Quantum arithmetic circuits have practical applications in various quantum algorithms. In this paper, we address quantum addition on 2-dimensional nearest-neighbor architectures based on the work presented by Choi and Van Meter (JETC 2012). To this end, we propose new circuit structures for some basic blocks in the adder, and reduce communication overhead by concurrent optimization of consecutive blocks and also by parallel execution of expensive Toffoli gates. The proposed optimizations reduce total depth from 140 √ n+k1 to 92 √ n+k2 for constants k1, k2 and affect the computation fidelity considerably
    corecore